Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression.

Identifieur interne : 003B95 ( Main/Exploration ); précédent : 003B94; suivant : 003B96

Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression.

Auteurs : Stuart C. Wooley [États-Unis] ; Jack R. Donaldson ; Michael T. Stevens ; Adam C. Gusse ; Richard L. Lindroth

Source :

RBID : pubmed:17951361

Descripteurs français

English descriptors

Abstract

BACKGROUND AND AIMS

A wide variety of plants produce extrafloral nectaries (EFNs) that are visited by predatory arthropods. But very few studies have investigated the relationship between plant genetic variation and EFNs. The presence of foliar EFNs is highly variable among different aspen (Populus tremuloides) genotypes and the EFNs are visited by parasitic wasps and predatory flies. The aim here was to determine the heritability of EFNs among aspen genotypes and age classes, possible trade-offs between direct and indirect defences, EFN induction following herbivory, and the relationship between EFNs and predatory insects.

METHODS

EFN density was quantified among aspen genotypes in Wisconsin on trees of different ages and broad-sense heritability from common garden trees was calculated. EFNs were also quantified in natural aspen stands in Utah. From the common garden trees foliar defensive chemical levels were quantified to evaluate their relationship with EFN density. A defoliation experiment was performed to determine if EFNs can be induced in response to herbivory. Finally, predatory arthropod abundance among aspen trees was quantified to determine the relationship between arthropod abundance and EFNs.

KEY RESULTS

Broad-sense heritability for expression (0.74-0.82) and induction (0.85) of EFNs was high. One-year-old trees had 20% greater EFN density than 4-year-old trees and more than 50% greater EFN density than > or =10-year-old trees. No trade-offs were found between foliar chemical concentrations and EFN density. Predatory fly abundance varied among aspen genotypes, but predatory arthropod abundance and average EFN density were not related.

CONCLUSIONS

Aspen extrafloral nectaries are strongly genetically determined and have the potential to respond rapidly to evolutionary forces. The pattern of EFN expression among different age classes of trees appears to follow predictions of optimal defence theory. The relationship between EFNs and predators likely varies in relation to multiple temporal and environmental factors.


DOI: 10.1093/aob/mcm220
PubMed: 17951361
PubMed Central: PMC2759261


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression.</title>
<author>
<name sortKey="Wooley, Stuart C" sort="Wooley, Stuart C" uniqKey="Wooley S" first="Stuart C" last="Wooley">Stuart C. Wooley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin, Madison, WI 53706, USA. wooley@biology.csustan.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, Madison, WI 53706</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Donaldson, Jack R" sort="Donaldson, Jack R" uniqKey="Donaldson J" first="Jack R" last="Donaldson">Jack R. Donaldson</name>
</author>
<author>
<name sortKey="Stevens, Michael T" sort="Stevens, Michael T" uniqKey="Stevens M" first="Michael T" last="Stevens">Michael T. Stevens</name>
</author>
<author>
<name sortKey="Gusse, Adam C" sort="Gusse, Adam C" uniqKey="Gusse A" first="Adam C" last="Gusse">Adam C. Gusse</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17951361</idno>
<idno type="pmid">17951361</idno>
<idno type="doi">10.1093/aob/mcm220</idno>
<idno type="pmc">PMC2759261</idno>
<idno type="wicri:Area/Main/Corpus">003A38</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003A38</idno>
<idno type="wicri:Area/Main/Curation">003A38</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003A38</idno>
<idno type="wicri:Area/Main/Exploration">003A38</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression.</title>
<author>
<name sortKey="Wooley, Stuart C" sort="Wooley, Stuart C" uniqKey="Wooley S" first="Stuart C" last="Wooley">Stuart C. Wooley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin, Madison, WI 53706, USA. wooley@biology.csustan.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, Madison, WI 53706</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Donaldson, Jack R" sort="Donaldson, Jack R" uniqKey="Donaldson J" first="Jack R" last="Donaldson">Jack R. Donaldson</name>
</author>
<author>
<name sortKey="Stevens, Michael T" sort="Stevens, Michael T" uniqKey="Stevens M" first="Michael T" last="Stevens">Michael T. Stevens</name>
</author>
<author>
<name sortKey="Gusse, Adam C" sort="Gusse, Adam C" uniqKey="Gusse A" first="Adam C" last="Gusse">Adam C. Gusse</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Arthropods (physiology)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Plant Components, Aerial (genetics)</term>
<term>Plant Components, Aerial (growth & development)</term>
<term>Plant Components, Aerial (parasitology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (parasitology)</term>
<term>Wisconsin (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Arthropodes (physiologie)</term>
<term>Génotype (MeSH)</term>
<term>Parties aériennes de plante (croissance et développement)</term>
<term>Parties aériennes de plante (génétique)</term>
<term>Parties aériennes de plante (parasitologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (parasitologie)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Wisconsin (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Wisconsin</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Parties aériennes de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Components, Aerial</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Components, Aerial</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Parties aériennes de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Parties aériennes de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Components, Aerial</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arthropodes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arthropods</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Variation</term>
<term>Genotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Animaux</term>
<term>Génotype</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Variation génétique</term>
<term>Wisconsin</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>A wide variety of plants produce extrafloral nectaries (EFNs) that are visited by predatory arthropods. But very few studies have investigated the relationship between plant genetic variation and EFNs. The presence of foliar EFNs is highly variable among different aspen (Populus tremuloides) genotypes and the EFNs are visited by parasitic wasps and predatory flies. The aim here was to determine the heritability of EFNs among aspen genotypes and age classes, possible trade-offs between direct and indirect defences, EFN induction following herbivory, and the relationship between EFNs and predatory insects.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>EFN density was quantified among aspen genotypes in Wisconsin on trees of different ages and broad-sense heritability from common garden trees was calculated. EFNs were also quantified in natural aspen stands in Utah. From the common garden trees foliar defensive chemical levels were quantified to evaluate their relationship with EFN density. A defoliation experiment was performed to determine if EFNs can be induced in response to herbivory. Finally, predatory arthropod abundance among aspen trees was quantified to determine the relationship between arthropod abundance and EFNs.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>Broad-sense heritability for expression (0.74-0.82) and induction (0.85) of EFNs was high. One-year-old trees had 20% greater EFN density than 4-year-old trees and more than 50% greater EFN density than > or =10-year-old trees. No trade-offs were found between foliar chemical concentrations and EFN density. Predatory fly abundance varied among aspen genotypes, but predatory arthropod abundance and average EFN density were not related.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Aspen extrafloral nectaries are strongly genetically determined and have the potential to respond rapidly to evolutionary forces. The pattern of EFN expression among different age classes of trees appears to follow predictions of optimal defence theory. The relationship between EFNs and predators likely varies in relation to multiple temporal and environmental factors.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17951361</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>01</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>100</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2007</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression.</ArticleTitle>
<Pagination>
<MedlinePgn>1337-46</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">A wide variety of plants produce extrafloral nectaries (EFNs) that are visited by predatory arthropods. But very few studies have investigated the relationship between plant genetic variation and EFNs. The presence of foliar EFNs is highly variable among different aspen (Populus tremuloides) genotypes and the EFNs are visited by parasitic wasps and predatory flies. The aim here was to determine the heritability of EFNs among aspen genotypes and age classes, possible trade-offs between direct and indirect defences, EFN induction following herbivory, and the relationship between EFNs and predatory insects.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">EFN density was quantified among aspen genotypes in Wisconsin on trees of different ages and broad-sense heritability from common garden trees was calculated. EFNs were also quantified in natural aspen stands in Utah. From the common garden trees foliar defensive chemical levels were quantified to evaluate their relationship with EFN density. A defoliation experiment was performed to determine if EFNs can be induced in response to herbivory. Finally, predatory arthropod abundance among aspen trees was quantified to determine the relationship between arthropod abundance and EFNs.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">Broad-sense heritability for expression (0.74-0.82) and induction (0.85) of EFNs was high. One-year-old trees had 20% greater EFN density than 4-year-old trees and more than 50% greater EFN density than > or =10-year-old trees. No trade-offs were found between foliar chemical concentrations and EFN density. Predatory fly abundance varied among aspen genotypes, but predatory arthropod abundance and average EFN density were not related.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Aspen extrafloral nectaries are strongly genetically determined and have the potential to respond rapidly to evolutionary forces. The pattern of EFN expression among different age classes of trees appears to follow predictions of optimal defence theory. The relationship between EFNs and predators likely varies in relation to multiple temporal and environmental factors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wooley</LastName>
<ForeName>Stuart C</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin, Madison, WI 53706, USA. wooley@biology.csustan.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Donaldson</LastName>
<ForeName>Jack R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stevens</LastName>
<ForeName>Michael T</ForeName>
<Initials>MT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gusse</LastName>
<ForeName>Adam C</ForeName>
<Initials>AC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Ann Bot (Lond). 2007 Dec;100(7):1607</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001181" MajorTopicYN="N">Arthropods</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035261" MajorTopicYN="N">Plant Components, Aerial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014922" MajorTopicYN="N" Type="Geographic">Wisconsin</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17951361</ArticleId>
<ArticleId IdType="pii">100/6/1337</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcm220</ArticleId>
<ArticleId IdType="pmc">PMC2759261</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1083-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Jan;134(2):210-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12647162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Nov;29(11):2499-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14682530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jul 8;430(6996):205-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15241414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2004 Dec 7;271(1556):2481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2006;51:525-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jun;148(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16468055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Jul;32(7):1415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2006 Jul;9(7):813-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16796571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 1997 Jun;149(6):1139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Jun;91(6):871-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Oct;112(2):217-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Jan;122(1):83-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Aug;120(2):295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1983 Sep;59(2-3):191-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Mar;97(2):186-192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1994;234:429-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7808315</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Donaldson, Jack R" sort="Donaldson, Jack R" uniqKey="Donaldson J" first="Jack R" last="Donaldson">Jack R. Donaldson</name>
<name sortKey="Gusse, Adam C" sort="Gusse, Adam C" uniqKey="Gusse A" first="Adam C" last="Gusse">Adam C. Gusse</name>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<name sortKey="Stevens, Michael T" sort="Stevens, Michael T" uniqKey="Stevens M" first="Michael T" last="Stevens">Michael T. Stevens</name>
</noCountry>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Wooley, Stuart C" sort="Wooley, Stuart C" uniqKey="Wooley S" first="Stuart C" last="Wooley">Stuart C. Wooley</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B95 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003B95 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17951361
   |texte=   Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17951361" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020